Interplay between NS3 protease and human La protein regulates translation-replication switch of Hepatitis C virus

نویسندگان

  • Upasana Ray
  • Saumitra Das
چکیده

HCV NS3 protein plays a central role in viral polyprotein processing and RNA replication. We demonstrate that the NS3 protease (NS3(pro)) domain alone can specifically bind to HCV-IRES RNA, predominantly in the SLIV region. The cleavage activity of the NS3 protease domain is reduced upon HCV-RNA binding. More importantly, NS3(pro) binding to the SLIV hinders the interaction of La protein, a cellular IRES-trans acting factor required for HCV IRES-mediated translation, resulting in inhibition of HCV-IRES activity. Although overexpression of both NS3(pro) as well as the full length NS3 protein decreased the level of HCV IRES mediated translation, replication of HCV replicon RNA was enhanced significantly. These observations suggest that the NS3(pro) binding to HCV IRES reduces translation in favor of RNA replication. The competition between the host factor (La) and the viral protein (NS3) for binding to HCV IRES might regulate the molecular switch from translation to replication of HCV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Establishment of NS3 tumor cell line expressing Hepatitis C virus Non-structural Protein 3 as valuable tool for HCV challenging in mice

Introduction: Hepatitis C virus (HCV) is one of the major medical problems. Human and chimpanzees are the only specific hosts which are naturally susceptible to HCV infection. Mice and other common laboratory animals are resistant to the virus, hence HCV prophylactic and therapeutic researches are very difficult and challenging. HCV non-structural protein 3 (NS3) is one of the most attractive t...

متن کامل

Cloning and expression of NS3 helicase fragment of hepatitis C virus and the study of its immunoreactivity in HCV infected patients

Objective(s): Hepatitis C is a major cause of liver failure worldwide. Current therapies applied for this disease are not fully effective and produce side effects in most cases. Non-structural protein 3 helicase (NS3) of HCV is one of the key enzymes in viral replication and infection. Therefore, this region is a promising target to design new drugs and therapies against HCV infection. The aim ...

متن کامل

The interdomain interface in bifunctional enzyme protein 3/4A (NS3/4A) regulates protease and helicase activities.

Hepatitis C (HCV) protein 3/4A (NS3/4A) is a bifunctional enzyme comprising two separate domains with protease and helicase activities, which are essential for viral propagation. Both domains are stable and have enzymatic activity separately, and the relevance and implications of having protease and helicase together as a single protein remains to be explored. Altered in vitro activities of iso...

متن کامل

DDB1 is a cellular substrate of NS3/4A protease and required for hepatitis C virus replication.

Hepatitis C virus (HCV) infection often causes long-term persistent hepatitis, which eventually leads to liver cirrhosis and hepatocellular carcinoma. HCV-encoded NS3/4A protease plays an important role in HCV immune evasion by cleaving key adapter proteins VISA and TRIF of the RIG-I-like receptors and Toll-like receptors mediated interferon (IFN) induction pathways. To further understand the r...

متن کامل

Effects of hepatitis C virus NS3 protein on expression of heat shock protein 70 and Glypican3 as the markers of hepatocellular carcinoma

Background and Aims: Hepatitis C virus (HCV) infection is an important risk factor for the development of liver cancer. The HCV NS3 protein plays a key role in the virus life cycle and can affect normal cellular activities, such as cell proliferation, cell death, and cell signaling pathways. Moreover, it may influence malignancy development. Two cellular genes, heat shock protein 70 (HSP70) and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011